SEQUENCES (NTH TERM)

Pearson Edexcel - Tuesda	w 10 May 2020	_ Daner 1 (Non-(`alculator) H	ighar Tiar
rearson Euckeer - ruesu	IN TO INIAN FOFO	- Lanci T ((Ani-/	-aiculatoi / i i	ignet tiet

1.					
1	The first five terms of an arithmetic	sequen	ce are		
	1	4	7	10	13
	Write down an expression, in terms	of n , fo	r the nt	th term o	of this sequ

(Total for Question 1 is 2 marks)

Pearson Edexcel – Thursday 4 June 2020 - Paper 2 (Calculator) Higher Tier

2.

		10	21	38	61	90		
Find an express	ion, in terms of	f n, for t	the <i>n</i> th t	erm of	this seq	uence.		
•						•		
					(To	tal for Question	16 is 3 marks)

16 Here are the first five terms of a quadratic sequence.

Pearson Edexcel - Tuesday 11 June 2019 - Paper 3 (Calculator) Higher Tier 3.

	-1	5	15	29	47	69
Find an expression, in terms	s of n, f	or the	nth tern	n of this	s sequer	nce.
					(Total	for Question 16 is 3 marks)
					(-5000	

Pearson Edexcel - Tuesday 12 June 2018 - Paper 3 (Calculator) Higher Tier 4.

16 Here are the first six terms of a quadratic sequence.

The 2nd term of the sequence is -2 The 4th term of the sequence is 12					
(a) Find the 6th term of the sequen	ce.				

					(4)
Here are the first five terms of a di					
		6		20	
(b) Find an expression, in terms of	n, for the	e nth tern	n of this se	equence.	
					(2)
			(Total	for Question	n 16 is 6 marks)

16 The nth term of a sequence is given by $an^2 + bn$ where a and b are integers.

23	S is a geometric sequence.	
	(a) Given that $(\sqrt{x} - 1)$, 1 and $(\sqrt{x} + 1)$ are the first three terms of S, find the You must show all your working.	value of x.
		(3)
	(b) Show that the 5th term of S is $7 + 5\sqrt{2}$	-
	(v) saw and an end of the control of	
		(2)

Pearson Edexcel - Thursday 8 June 2017 - Paper 2 (Calculator) Higher Tier

(Total for Question 23 is 5 marks)

6.

	4	11	22	37	56
Find an expression, in ter	ms of n,	for the ntl	term of t	his seque	nce.
				(Total	for Question 22 is 3 marks)

Pearson Edexcel - Tuesday 13 June 2017 - Paper 3 (Calculator) Higher Tier

22 Here are the first five terms of a sequence.

7.

16 Using
$$x_{n+1} = -2 - \frac{4}{x_n^2}$$

with $x_0 = -2.5$

(a) find the values of x_1 , x_2 and x_3

(Total for Question 16 is 5 marks)

(b) Explain the relationship between the values of x_1 , x_2 and x_3 and the equation $x^3 + 2x^2 + 4 = 0$

Pearson Edexcel - Specimen Papers Set 2 - Paper 2 (Calculator) Higher Tier 8.

The number o	of slugs in a gard	den t days fro	m now is p,	where	
$p_{_{0}} = 1$	00				
$p_{t+1} =$	1.06p,				
Work out the	number of slugs	s in the garde	n 3 days from	n now.	
				(Total for Q	Question 13 is 3 marks)
oreon Edove	al Caasimas	a Domona Ca	at 1 Dans	r 2 (Calaulai	tou\ Highou Tiou
arson Edexc	ei - Specimer	1 Papers Se	et 1 - Pape	r 2 (Caicula	tor) Higher Tier
Here are the f	irst 5 terms of a	a quadratic se	equence.		
	1	3	7	13	21
Find an expre	ssion, in terms	of n, for the	nth term of	this quadratic	sequence.

The number of bees in a beehive at the start of year n is P_a .
The number of bees in the beehive at the start of the following year is given by

$$P_{n+1} = 1.05(P_n - 250)$$

At the start of 2015 there were 9500 bees in the beehive.

How many bees will there be in the beehive at the start of 2018?

(Total for Question 21 is 3 marks)

Pearson Edexcel - Specimen Papers Set 1 - Paper 3 (Calculator) Higher Tier

11.

21 (a) Show that the equation $3x^2 - x^3 + 3 = 0$ can be rearranged to give $x = 3 + \frac{3}{x^2}$ (2)(b) Using $x_{n+1} = 3 + \frac{3}{x_n^2}$ with $x_0 = 3.2$, find the values of x_1, x_2 and x_3 (3) (c) Explain what the values of x1, x2 and x3 represent.

Pearson Edexcel - Specimen Papers Set 1 - Paper 3 (Calculator) Higher Tier 12.

(1)

(Total for Question 21 is 6 marks)

22 Here are the first five terms of an arithmetic sequence. 13 25 31 Prove that the difference between the squares of any two terms of the sequence is always a multiple of 24 (Total for Question 22 is 6 marks)

3	Here are the	first fou	r terms o	f an arithmetic se	quence.		
	6	10	14	18			
	(a) Write an	express	ion, in te	rms of n , for the n	th term of this seq	uence.	
							(2)
	The n th term	of a dif	ferent ar	ithmetic sequence	is $3n + 5$		
	(b) Is 108 a to Show how						
							(2)
					(Total f	for Question 3 is 4 m	

Pearson Edexcel - Sample Paper 3 - (Calculator) Higher Tier

14.

3	Here are the first six terms of a Fibonacci sequence.	
	1 1 2 3 5 8	
	The rule to continue a Fibonacci sequence is,	
	the next term in the sequence is the sum of the two previous ter	ms.
	(a) Find the 9th term of this sequence.	
	-	(1)
	The first three terms of a different Fibonacci sequence are	
	a b $a+b$	
	(b) Show that the 6th term of this sequence is $3a + 5b$	
		(2)
	Given that the 3rd term is 7 and the 6th term is 29,	
	(c) find the value of a and the value of b.	
		(3)
	(Total for Question	

Pearson Edexcel - Wednesday 4 November 2015 - Paper 1 (Non-Calculator) Higher Tier 15.

	3 Here are the first four terms of an arithmetic sequence.	
	11 17 23 29	
	(a) Find, in terms of n , an expression for the n th term of this arithmeter.	metic sequence.
		(2)
	(b) Is 121 a term of this arithmetic sequence? You must explain your answer.	
		(2)
	(Total f	or Question 3 is 4 marks)
D-	Pearson Edeved - Friday 7 November 2014 - Paper 2 (Calculator) Hig	
re	rearson Edexcer - rilday / November 2014 - Paper 2 (Calculator) rilg	her Tier
	Pearson Edexcel - Friday 7 November 2014 - Paper 2 (Calculator) Hig 16.	her Tier
16	16.	her Tier
16	16.7 Here are the first five terms of an arithmetic sequence.	her Tier
16	 16. 7 Here are the first five terms of an arithmetic sequence. 2 6 10 14 18 	
16	16.7 Here are the first five terms of an arithmetic sequence.	
16	 16. 7 Here are the first five terms of an arithmetic sequence. 2 6 10 14 18 	e.
16.	 16. 7 Here are the first five terms of an arithmetic sequence. 2 6 10 14 18 (a) Write down an expression, in terms of n, for the nth term of this sequence. 	e.
16.7	 16. 7 Here are the first five terms of an arithmetic sequence. 2 6 10 14 18 	e.
16.7	 16. 7 Here are the first five terms of an arithmetic sequence. 2 6 10 14 18 (a) Write down an expression, in terms of n, for the nth term of this sequence. *(b) Is 86 a term in the sequence? 	e.
16.7	 16. 7 Here are the first five terms of an arithmetic sequence. 2 6 10 14 18 (a) Write down an expression, in terms of n, for the nth term of this sequence. *(b) Is 86 a term in the sequence? 	e.
16.7	 16. 7 Here are the first five terms of an arithmetic sequence. 2 6 10 14 18 (a) Write down an expression, in terms of n, for the nth term of this sequence. *(b) Is 86 a term in the sequence? 	e.
16.7	 16. 7 Here are the first five terms of an arithmetic sequence. 2 6 10 14 18 (a) Write down an expression, in terms of n, for the nth term of this sequence. *(b) Is 86 a term in the sequence? 	e.
16.7	 16. 7 Here are the first five terms of an arithmetic sequence. 2 6 10 14 18 (a) Write down an expression, in terms of n, for the nth term of this sequence. *(b) Is 86 a term in the sequence? 	e.

Pearson Edexcel - Friday 13 June 2014 - Paper 2 (Calculator) Higher Tier 17. 12 Here are the first five terms of an arithmetic sequence. 4 9 14 19 24 (a) Find, in terms of n, an expression for the nth term of this sequence.

Here are the first five terms of a different sequence.

2 2 0 -4 -10

An expression for the nth term of this sequence is $3n - n^2$

(b) Write down, in terms of n, an expression for the nth term of a sequence whose first five terms are

4 4 0 -8 -20

(1)

(2)

(Total for Question 12 is 3 marks)

Pearson Edexcel - Friday 8 November 2013 - Paper 2 (Calculator) Higher Tier 18.

	four terms of ar	n arithmetic	sequence	в.			
	3	10		17		24	
(a) Find, in terms	s of n, an expres	sion for the	nth term	of this a	rithmetic s	sequence.	
						-	(2)
(b) Is 150 a term	of this sequence	e?					
You must exp	olain how you go	et your ansv	ver.				
							(2)
				(Tot	al for Qu	estion 8 is 4	marks)
earson Edevce		20 5 1					
	I - Thursday	28 Febr	uary 20	013 - P	aper 1 (Non-Cal	culator) Higher
9.				013 - P	aper 1 (Non-Cal	culator) Higher
9.				013 - P	aper 1 (Non-Cal	culator) Higher
9.	5 terms of an ar	ithmetic see	quence.	21	27	Non-Cal	culator) Higher
9. Here are the first	5 terms of an ar	ithmetic see	quence.	21	27	Non-Cal	culator) Higher
9. Here are the first	5 terms of an ar	ithmetic see	quence.	21	27	Non-Cal	culator) Higher
9. Here are the first	5 terms of an ar	ithmetic see	quence.	21	27	Non-Cal	culator) Higher
Here are the first (a) Find an expre	5 terms of an ar 3 ession, in terms of	ithmetic see 9 of <i>n</i> , for the	quence.	21	27	Non-Cal	culator) Higher
9. Here are the first (a) Find an expre	5 terms of an ar 3 ession, in terms of	ithmetic see 9 of <i>n</i> , for the	quence.	21	27	Non-Cal	
Here are the first (a) Find an express Ben says that 150 (b) Is Ben right?	5 terms of an ar 3 ession, in terms of	of n, for the	quence.	21	27	Non-Cal	
Here are the first (a) Find an express Ben says that 150 (b) Is Ben right?	5 terms of an ar 3 ession, in terms of	of n, for the	quence.	21	27	Non-Cal	
Here are the first (a) Find an express Ben says that 150 (b) Is Ben right?	5 terms of an ar 3 ession, in terms of	of n, for the	quence.	21	27	Non-Cal	
Here are the first (a) Find an express Ben says that 150 (b) Is Ben right?	5 terms of an ar 3 ession, in terms of	of n, for the	quence.	21	27	Non-Cal	
Here are the first (a) Find an express Ben says that 150 (b) Is Ben right?	5 terms of an ar 3 ession, in terms of	of n, for the	quence.	21	27	Non-Cal	

20.						
1.	Here a	are th	e first	five terr	ns in a 1	number
		5	9	13	17	21
	Find t	he 10	th tern	n in this	number	r sequen

(Total 2 marks)

Pearson Edexcel - Monday 5 March 2012 - Paper 4 (Calculator) Higher Tier

Pearson Edexcel - Wednesday 9 November 2011 - Paper 3 (Non-Calculator) Higher Tier 21.

2. Here is a number pattern.

Line Number			
1	1 ² + 3 ²	$2 \times 2^2 + 2$	10
2	$2^2 + 4^2$	$2 \times 3^2 + 2$	20
3	$3^2 + 5^2$	$2 \times 4^2 + 2$	34
4			52
10			

- (a) Complete Line Number 4 of the pattern.

 (1)
- (b) Complete Line Number 10 of the pattern.

 (2)
- (c) Use the number pattern to find the answer to $999^2 + 1001^2$

(2) (Total 5 marks)

Pearson Edexcel - Monday 6 June 2011 - Paper 3 (Non-Calculator) Higher Tier 22.

9.	The nth term of	of a number seq	uence is given	by $3n+1$		
	(a) Work out	the first two ter	ms of the num	ber sequence.		
						(1)
	Here are the fi	irst four terms o	f another numb	er sequence.		
		1 5				
	(b) Find, in to		pression for the	e nth term of	this number seque	ence.
	(0)					
					***************************************	(2)
_					(To	tal 3 marks)
eai	rson Edexcel	- Tuesday 9	November	2010 - Pap	er 3 (Non-Cald	ulator) Higher T
3.						
4.	Here are the f	irst five terms o	f an arithmetic	sequence.		
	2	6	10	14	18	
	(a) Find, in to	erms of n, an ex	pression for the	nth term of t	his sequence.	
						(2)
	(b) An expre	ssion for the <i>n</i> th	term of anothe	er sequence is	$10 - n^2$	
		the third term o				
			-			
	(ii) Find	the fifth term of	f this sequence.			
					er :	(2)
					(Tot	al 4 marks)

17 Here is a sequence. 3 $3\sqrt{5}$ 15 $15\sqrt{5}$ (a) Work out the next term. (a) (b) Find the *n*th term.

OCR GSCE - Monday 9 November 2020 - Paper 6 (Calculator) Higher Tier

24.

OCR GSCE – Monday 11 November 2019 – Paper 6 (Calculator) Higher Tier 25.

11	A se	eque	nce is defined by the rule $u_{n+1} = 5u_n$	- 15.	
	(a)	If u	₃ = 6, calculate		
		(i)	u_5		
				(a)(i)	<i>u</i> ₅ =[3]
		(ii)	II-	(4)(1)	u ₅ –[0]
		(,	3 2		
				(ii)	<i>u</i> ₂ =[3]
	(b)	Tre	vor says		
			If u_1 = 3.75 then u_{100} = 3.75		
		Sho	ow that Trevor is correct.		[2]

OCR GSCE – Tuesday 21 May 2019 – Paper 4 (Calculator) Higher Tier 26.

12 (a) Here are the first four terms of a sequence.

		-1	4	9	14		
	Write an	expres	sion fo	r the <i>n</i> t	h term of this	sequen	nce.
						(a)	[2]
(b)	The nth	term of	anothe	r sequ	ence is given	by	
		an²+l	bn				
	The third	d term is	s 9 and	the six	th term is 120	6.	
	Find the	value o	of a and	the va	lue of b.		
						(b)	a =
							b =[5]

OCR GSCE – Tuesday 6 November 2018 – Paper 4 (Calculator) Higher Tier 27.

59

17 Here are the first four terms of a quadratic sequence.

2 15 34

The <i>n</i> th term is $an^2 + bn + c$.
Find the values of a, b and c.

a =b =

c =[4]

OCR GSCE – Thursday 8 November 2018 – Paper 5 (Non-Calculator) Higher Tier 28.

16	Her	Here is a sequence.										
		5	5√3	15	15√3							
	(a)	Work out the	e next term.									
	(b)	Find the nth	term.		(a)	[1]						
					(b)	[3]						

OCR GSCE – Monday 12 November 2018 – Paper 6 (Calculator) Higher Tier 29.

15 Use the formula
$$x_{n+1} = \frac{(x_n)^3}{30} + 2$$
 with $x_1 = 2$ to calculate x_2 and x_3 . Round your answers correct to 4 decimal places.

$$x_2 =$$
 and $x_3 =$ [3]

OCR GSCE – Thursday 24 May 2018 – Paper 4 (Calculator) Higher Tier 30.

19	Here are the first four terms of a quadratic sequence.										
		0	9	22	39						

The nth term can be written as $an^2 + bn + c$.

Find the values of a, b and c.

	4
b =	
9 =	

2	(a)	Writ	te the n	ext ter	m in ea	ch of th	nese se	quence	S.
		(i)	1	1	2	3	5	8	
									(a)(i)[1]
		(ii)	2	4	8	16	32	64	
									(ii)[1]
	(b)	Writ	te an e	xpressi	on for t	he nth	term of	the seq	uence below.
				15	12	9	6		
									(b)[2]

OCR GSCE – Tuesday 6 November 2017 – Paper 5 (Non - Calculator) Higher Tier

31.

OCR GSCE – Wednesday 8 November 2017 – Paper 6 (Calculator) Higher Tier 32.

12	(a)	A sequence	is defined	using this	term-to-term	rule
12	(a)	A sequence	is delilled	uoning unio	terrii-to-terrii	i uic.

$$u_{n+1} = \sqrt{2u_n + 15}$$

If $u_1 = 5$, find u_2 .

(b) Another sequence is defined using this term-to-term rule,

$$u_{n+1} = ku_n + r$$

where k and r are constants.

Given that $u_2 = 41$, $u_3 = 206$ and $u_4 = 1031$, find the value of k and the value of r.

OCR GSCE – Thursday 25 May 2017 – Paper 4 (Calculator) Higher Tier

33.			

19	(a)	Here	are	the	first	four	terms	of	a	sequence.	
----	-----	------	-----	-----	-------	------	-------	----	---	-----------	--

 $\frac{1}{2}$ $\frac{4}{3}$ $\frac{9}{4}$ $\frac{16}{5}$

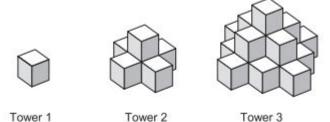
Find the nth term of this sequence.

(a)		[2]
-----	--	-----

(b) Here are the first four terms of a quadratic sequence, the *n*th term of this quadratic sequence is $an^2 + bn + c$.

2 12 28 50

Find the values of a, b and c.

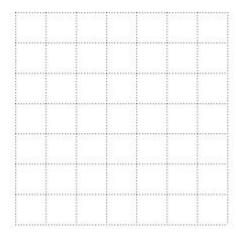

OCR GSCE – Sample Papers – Paper 4 (Calculator) Higher Tier

34.		
19	A se	equence is defined by the term-to-term rule $u_{n+1} = u_n^2 - 8u_n + 17$.
	(a)	Given that $u_1 = 4$, find u_2 and u_3 .
		(a)[2]
	(b)	Given instead that $u_1 = 2$, find u_2 , u_3 and u_{100} .
		(b)[3]

OCR GSCE - Sample Papers - Paper 5 (Non - Calculator) Higher Tier

35.

10 Here is a picture of three towers. Not all the cubes can be seen in the towers.


Edith uses 1 cube to build tower 1.

Edith uses 6 cubes to build tower 2. There are 5 cubes on the bottom layer.

(a) Write down the total number of cubes in tower 3.

(b) Draw a plan view of the arrangement of cubes Edith will use for the bottom layer of tower 4.

(c)	Continue this	s sequence to sho	ow the number of	of cubes used for t	the bottom layer of each towe	er.
	1	Tower 1	Tower 2	Tower 3	Tower 4	
		1	5		r	2]
(d)	Find an eyn	ression for the nu	mher of cubes i	used in the bottom		-,
(u)	riliu ali expi	ession for the nu	illiber of cubes t	ised in the bottom	hayer or tower n.	
				(d)	[4]

OCR GSCE – Sample Papers – Paper 6 (Calculator) Higher Tier 36.

•			
3	(a)	This expression can be used to generate a sequence of numbers.	
		$n^2 - n + 11$	
		(i) Work out the first three terms of this sequence.	
		(a)(i), ,,	[2]
		(ii) Show that this expression does not only generate prime numbers.	
			[2]
	(b)	Marta says	
		odd square numbers have exactly three factors.	
		Give one example where this is correct and another where this is not correct.	
		In each case, write down the number and its factors.	
		Correct	*************
		Not correct	
			[2]
(0	c) H	ere are some properties of a number.	
		It is a common factor of 288 and 360.	
		It is a common multiple of 4 and 6.	
	•	It is larger than 25.	
	Fi	ind the two possible numbers with these properties.	

(c)[4]

AQA GSCE – Tuesday 19 May 2020 – Paper 1 (Non - Calculator) Higher Tier 36.

9	(a)	All the terms of a geometric progression are positive.	
		The second and fourth terms are shown.	
		4 16	
		Work out the first and third terms.	[2 marks]
		First term	
		Third term	
9	(b)	The first two terms of an arithmetic progression are shown.	
		p 5p	
		The sum of the first three terms is 90	
		Work out the value of p .	[3 marks]
		•	
		Answer	

16	A sequence	of numbers i	is formed by	y the iterative	process
----	------------	--------------	--------------	-----------------	---------

$$u_{n+1} = \frac{4}{u_n - 1}$$
 $u_1 = 9$

Work out the values of u_2 and u_3

				[2 marks]		

$$u_3 =$$

AQA GSCE – Tuesday 21 May 2019 – Paper 1 (Non - Calculator) Higher Tier 38.

12 The next term of a sequence is made by adding the previous two terms.

Which of these sequences follows this rule? Circle your answer.

[1 mark]

-9 2 -7 -5 -12

-3 5 -2 3 1

0 -3 -3 0 -3

-1 -1 -2 -3 1

AQA GSCE – Tuesday 6 November 2018 – Paper 1 (Non - Calculator) Higher Tier 39.

21	Here are	the first fou	ır terms of a	quadratic se	equence.	
		11	26	45	68	
	Work out	an express	sion for the <i>i</i>	oth term.		[3 marks]
		An	swer			

AQA GSCE – Thu	ursday 8 November 2	2018 – Paper 2 (Calculator)	Higher Tie	٢
40.					

Which of these is a geometric progression? 3 Circle your answer.

[1 mark]

1 3 5 7 9

1 3 6 10 15

1 4 9 16 25

1 3 9 27 81

AQA GSCE – Monday 12 November 2018 – Paper 3 (Calculator) Higher Tier 41.

3 The first 4 terms of a linear sequence are

> 3 11

19

27

Circle the expression for the nth term.

[1 mark]

8 - 5n n + 8

8n + 3

8n - 5

AQA GSCE – Monday 12 November 2018 – Paper 3 (Calculator) Higher Tier

42.

22 An approximate solution to an equation is found using the iterative formula

$$x_{n+1} = \frac{(x_n)^3 - 2}{10}$$
 with $x_1 = -1$

22	(a)	Mark out the values of wand w	
22	(a)	Work out the values of x_2 and x_3	3

[2 marks]

x₂=

x₃ = _____

22 (b) Work out the solution to 5 decimal places.

[1 mark]

x = ____

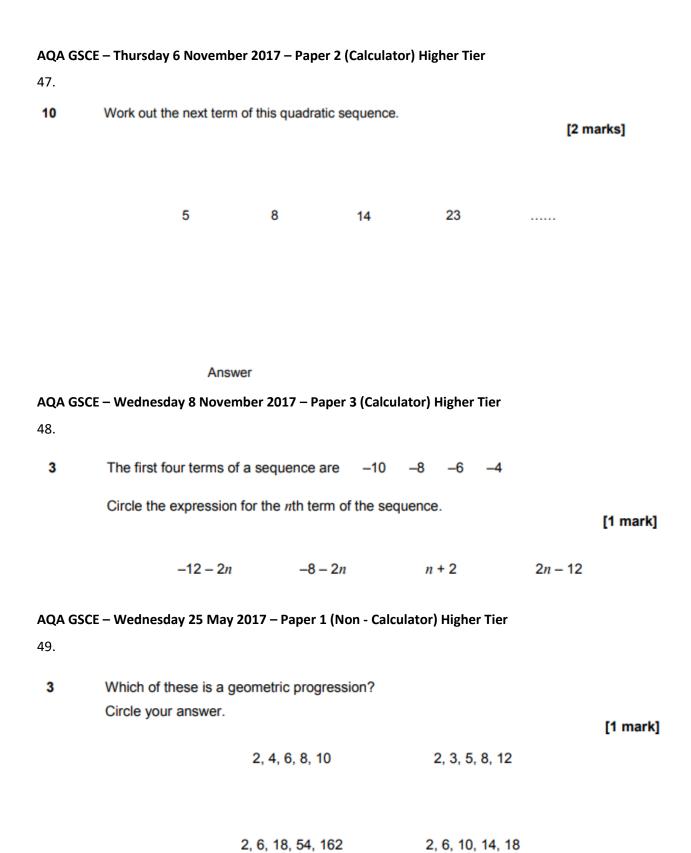
Α	A linear sequence starts								
	a	+ 2 <i>b</i>	a + 6b	a + 10b					
Т	he 2nd	term has v	value 8						
Т	he 5th to	erm has v	alue 44						
V	Vork out	the value	s of a and b .				[4 mari		
_									
_									
-									
-									
-									
-									
-									
_									
_									
-									
_									
			a =						

AQA GSCE – Monday 24 May 2018 – Paper 1 (Non - Calculator) Higher Tier

AQA GSCE – Thursday 7 June 2018 – Paper 2 (Calculator) Higher Tier 44.

Match each sequence to its description.
One has been done for you.

[4 marks]


1 1 2 3 5 8	Arithmetic progression
1 2 4 8 16 32	Geometric progression
1 2 3 4 5 6	Fibonacci sequence
1 3 6 10 15 21	Triangular numbers
1 4 9 16 25 36	Cube numbers
1 8 27 64 125 216	Square numbers

AQA GSCE – Tuesday 12 June 2018 – Paper 3 (Calculator) Higher Tier 45. 10 The nth term of a sequence is 12n – 5 Work out the numbers in the sequence that have two digits and are not prime. [3 marks]

Answer

46.								
23	A sequence of numbers is formed by the iterative process							
	$u_{n+1} = \frac{3}{u_n + 1}, \qquad u_1 = 4$							
	Work out the values of u_2 and u_3	[2 marks]						
	u ₂ =	_						
	<i>u</i> ₃ =							

AQA GSCE – Tuesday 12 June 2018 – Paper 3 (Calculator) Higher Tier

50.									
4	Here is a seq	uence.							
		90	82	74	66	58			
	Circle the exp	oression	for the	nth tern	n of the	sequenc	ce.		
		n – 8		98 –	8 <i>n</i>	81	n + 82	8 <i>n</i> – 98	[1 mark]
AQA GSC	E – Tuesday 13 J	June 201	7 – Pap	oer 3 (Ca	lculator) Higher	Tier		
51.									
22	Work out an expre	ession for	the nth	term of the	e quadra	tic sequen	се		
		2	17	40	71				
	Give your answer	in the forr	m an ²	+ bn + c	where a	a, b and c	are constants.	[3 marks]	
		A	nswer _					_	

AQA GSCE – Thursday 8 June 2017 – Paper 2 (Calculator) Higher Tier

E – Sample Paper 1 (Non - Calculator) Higher Tier	
The n th term of a sequence is $2n+1$	
The n th term of a different sequence is $3n-1$	
Work out the three numbers that are	
in both sequences	
and	
between 20 and 40	
La Carte de la Car	marks]
	The <i>n</i> th term of a sequence is $2n + 1$ The <i>n</i> th term of a different sequence is $3n - 1$ Work out the three numbers that are in both sequences and between 20 and 40

AQA GSCE – Sample Paper 2 (Calculator) Higher Tier

53.

Which sequence is a geometric progression?
Circle your answer.

[1 mark]

1 2 3 4

1 2 4 7

1 2 4 8

1 2 3 5

AQA GSCE – Sample Paper 3 (Calculator) Higher Tier

54.

14 (a) The *n*th term of a sequence is $2^n + 2^{n-1}$

Work out the 10th term of the sequence.

[1 mark]

Answer

14 (b) The *n*th term of a different sequence is $4(2^n + 2^{n-1})$

Circle the expression that is equivalent to $4(2^n + 2^{n-1})$

[1 mark]

$$2^{n+2} + 2^{n+1}$$

$$2^{2n} + 2^{2(n-1)}$$

$$8^{n} + 8^{n-1}$$

$$2^{n+2} + 2^{n-1}$$